EconPapers    
Economics at your fingertips  
 

Prediction of Drifter Trajectory Using Evolutionary Computation

Yong-Wook Nam and Yong-Hyuk Kim

Discrete Dynamics in Nature and Society, 2018, vol. 2018, 1-15

Abstract:

We used evolutionary computation to predict the trajectory of surface drifters. The data used to create the predictive model comprise the hourly position of the drifters, the flow and wind velocity at the location, and the location predicted by the MOHID model. In contrast to existing numerical models that use the Lagrangian method, we used an optimization algorithm to predict the trajectory. As the evaluation measure, a method that gives a better score as the Mean Absolute Error (MAE) when the difference between the predicted position in time and the actual position is lower and the Normalized Cumulative Lagrangian Separation (NCLS), which is widely used as a trajectory evaluation method of drifters, were used. The evolutionary methods Differential Evolution (DE), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and ensembles of the above were used, with the DE&PSO ensemble found to be the best prediction model. Considering our objective to find a parameter that minimizes the fitness function to identify the average of the difference between the predictive change and the actual change, this model yielded better results than the existing numerical model in three of the four cases used for the test data, at an average of 19.36% for MAE and 5.96% for NCLS. Thus, the model using the fitness function set in this study showed improved results in NCLS and thus shows that NCLS can be used sufficiently in the evaluation system.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2018/6848745.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2018/6848745.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:6848745

DOI: 10.1155/2018/6848745

Access Statistics for this article

More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnddns:6848745