EconPapers    
Economics at your fingertips  
 

Using Multilayer Perceptron to Predict Forest Fires in Jiangxi Province, Southeast China

Keke Gao, Zhongke Feng, Shan Wang and Florentino Borondo

Discrete Dynamics in Nature and Society, 2022, vol. 2022, 1-12

Abstract: The forest fire occurrence prediction model is a very useful tool for preventing and extinguishing forest fires. The determination of forest fire drivers is important for establishing a high-precision forest fire prediction model. In this paper, we studied the relative influence of different types of factors on forest fire occurrence in forest areas of Jiangxi Province. Several models, i.e., Multilayer perceptron (MLP), Logistic, and Support vector machine (SVM), are used to predict the occurrence of forest fires. Through modeling and analysis of forest fire data from 2010 to 2016 years, we found that climatic and topographic are influential factors in the model of forest fire occurrence in Jiangxi Province. Subsequently, we established the MLP occurrence model based on the significant factors after the variable screening. Using ROC plots to compare the effects of the three models, MLP scored 0.984, which was higher than Logistic of 0.933 and SVM of 0.974. For the independent validation set of 2017-2018, an accuracy of 91.73% was also achieved. Therefore, the multilayer perceptron is well suited for the prediction of forest fires in Jiangxi Province. Based on the prediction results, a fire risk level map of Jiangxi Province was produced. Finally, we analyzed the changes in forest fire quantity under climate change, which can be helpful for fire prevention and suppression of forest fires.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/ddns/2022/6930812.pdf (application/pdf)
http://downloads.hindawi.com/journals/ddns/2022/6930812.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:6930812

DOI: 10.1155/2022/6930812

Access Statistics for this article

More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnddns:6930812