A Fixed Point Approach to the Stability of a General Mixed AQCQ-Functional Equation in Non-Archimedean Normed Spaces
Tian Zhou Xu,
John Michael Rassias and
Wan Xin Xu
Discrete Dynamics in Nature and Society, 2010, vol. 2010, 1-24
Abstract:
Using the fixed point methods, we prove the generalized Hyers-Ulam stability of the general mixed additive-quadratic-cubic-quartic functional equation 𠑓 ( 𠑥 + 𠑘 𠑦 ) + 𠑓 ( 𠑥 − 𠑘 𠑦 ) = 𠑘 2 𠑓 ( 𠑥 + 𠑦 ) + 𠑘 2 𠑓 ( 𠑥 − 𠑦 ) + 2 ( 1 − 𠑘 2 ) 𠑓 ( 𠑥 ) + ( ( 𠑘 4 − 𠑘 2 ) / 1 2 ) [ 𠑓 ( 2 𠑦 ) + 𠑓 ( − 2 𠑦 ) − 4 𠑓 ( 𠑦 ) − 4 𠑓 ( − 𠑦 ) ] for a fixed integer 𠑘 with 𠑘 ≠0 , ± 1 in non-Archimedean normed spaces.
Date: 2010
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2010/812545.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2010/812545.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:812545
DOI: 10.1155/2010/812545
Access Statistics for this article
More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().