Research on RMB Exchange Rate Volatility Risk Based on MSGARCH-VaR Model
Xiaofei Wu,
Shuzhen Zhu and
Junjie Zhou
Discrete Dynamics in Nature and Society, 2020, vol. 2020, 1-10
Abstract:
This paper captures the RMB exchange rate volatility using the Markov-switching GARCH (MSGARCH) models and traditional single-regime GARCH models. Through the Markov Chain Monte Carlo (MCMC) method, the model parameters are estimated to study the volatility dynamics of the RMB exchange rate. Furthermore, we compare the MSGARCH models to the single-regime GARCH specifications in terms of Value-at-Risk (VaR) prediction accuracy. According to the Deviance information criterion method, the research shows that MSGARCH models outperform the single-regime specifications in capturing the complexity of RMB exchange rate volatility. After the RMB exchange rate reform in 2015, the volatility is more asymmetric and persistent, and the probability of being in the turbulent volatility regime is significantly increased. The continuous escalation of Sino-US trade friction has increased the VaR of RMB exchange rate log-returns. From the evaluation results of the actual over expected exceedance ratio (AE), the conditional coverage (CC) test, and the dynamic quantile (DQ) test, we find strong evidence that two-regime MSGARCH models could forecast VaR more accurately, which provides practical value for China’s foreign exchange management authorities to manage the financial risk.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2020/8719574.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2020/8719574.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:8719574
DOI: 10.1155/2020/8719574
Access Statistics for this article
More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().