EconPapers    
Economics at your fingertips  
 

Coal Mine Gas Safety Evaluation Based on Adaptive Weighted Least Squares Support Vector Machine and Improved Dempster–Shafer Evidence Theory

Zhenming Sun and Dong Li

Discrete Dynamics in Nature and Society, 2020, vol. 2020, 1-12

Abstract:

Gas safety evaluation has always been vital for coal mine safety management. To enhance the accuracy of coal mine gas safety evaluation results, a new gas safety evaluation model is proposed based on the adaptive weighted least squares support vector machine (AWLS-SVM) and improved Dempster–Shafer (D-S) evidence theory. The AWLS-SVM is used to calculate the sensor value at the evaluation time, and the D-S evidence theory is used to evaluate the safety status. First, the sensor data of gas concentration, wind speed, dust, and temperature were obtained from the coal mine safety monitoring system, and the prediction results of sensor data are obtained using the AWLS-SVM; hence, the prediction results would be the input of the evaluation model. Second, because the basic probability assignment (BPA) function is the basis of D-S evidence theory calculation, the BPA function of each sensor is determined using the posterior probability modeling method, and the similarity is introduced for optimization. Then, regarding the problem of fusion failure in D-S evidence theory when fusing high-conflict evidence, using the idea of assigning weights, the importance of each evidence is allocated to weaken the effect of conflicting evidence on the evaluation results. To prevent the loss of the effective information of the original evidence followed by modifying the evidence source, a conflict allocation coefficient is introduced based on fusion rules. Ultimately, taking Qing Gang Ping coal mine located in Shaanxi province as the study area, a gas safety evaluation example analysis is performed for the assessment model developed in this paper. The results indicate that the similarity measures can effectively eliminate high-conflict evidence sources. Moreover, the accuracy of D-S evidence theory based on enhanced fusion rules is improved compared to the D-S evidence theory in terms of the modified evidence sources and the original D-S evidence theory. Since more sensors are fused, the evaluation results have higher accuracy. Furthermore, the multisensor data evaluation results are enhanced compared to the single sensor evaluation outcomes.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2020/8782450.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2020/8782450.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:8782450

DOI: 10.1155/2020/8782450

Access Statistics for this article

More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnddns:8782450