Comparative Analysis of Drones and Riders in On-Demand Meal Delivery Based on Prospect Theory
Hong Jiang and
Xinhui Ren
Discrete Dynamics in Nature and Society, 2020, vol. 2020, 1-13
Abstract:
At present, the demand for on-demand meal delivery is increasing, and the main delivery pattern is rider delivery. However, rider delivery has certain problems in terms of timeliness and security. Due to its advantages of being fast, convenient, and safe, drone delivery can, to a certain extent, solve the problems of rider delivery. However, can drone delivery completely replace rider delivery? The paper mainly uses the prospect theory to discuss the conditions under which drone delivery is superior to rider delivery based on four factors: delivery distance, degree of rider delay, pickup time, and consumer attitudes towards drone delivery. Based on the research, it was found that when the delivery distance is more than 7 kilometres, the pickup time is within 2 minutes, or when consumers accept drone delivery, drone delivery is better than rider delivery. When the rider’s delay caused the delivery time to increase by more than 20%, the advantages of drone delivery began to stand out. Moreover, research has proven that drone delivery will help expand the scope of instant delivery, and the rational layout of drone airports and strengthening of consumer awareness and friendliness towards drone delivery will also help promote the development of drone delivery.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2020/9237689.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2020/9237689.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:9237689
DOI: 10.1155/2020/9237689
Access Statistics for this article
More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().