EconPapers    
Economics at your fingertips  
 

Qualitative Behaviour of Solutions in Two Models of Thin Liquid Films

Matthew Michal, Marina Chugunova and Roman Taranets

International Journal of Differential Equations, 2016, vol. 2016, 1-11

Abstract:

For the thin-film model of a viscous flow which originates from lubrication approximation and has a full nonlinear curvature term, we prove existence of nonnegative weak solutions. Depending on initial data, we show algebraic or exponential dissipation of an energy functional which implies dissipation of the solution arc length that is a well known property for a Hele-Shaw flow. For the classical thin-film model with linearized curvature term, under some restrictions on parameter and gradient values, we also prove analytically the arc length dissipation property for positive solutions. We compare the numerical solutions for both models, with nonlinear and with linearized curvature terms. In regimes when solutions develop finite time singularities, we explain the difference in qualitative behaviour of solutions.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/IJDE/2016/4063740.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJDE/2016/4063740.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnijde:4063740

DOI: 10.1155/2016/4063740

Access Statistics for this article

More articles in International Journal of Differential Equations from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnijde:4063740