Hypothesis Testing in a Fractional Ornstein-Uhlenbeck Model
Michael Moers
International Journal of Stochastic Analysis, 2012, vol. 2012, 1-23
Abstract:
Consider an Ornstein-Uhlenbeck process driven by a fractional Brownian motion. It is an interesting problem to find criteria for whether the process is stable or has a unit root, given a finite sample of observations. Recently, various asymptotic distributions for estimators of the drift parameter have been developed. We illustrate through computer simulations and through a Stein's bound that these asymptotic distributions are inadequate approximations of the finite-sample distribution for moderate values of the drift and the sample size. We propose a new model to obtain asymptotic distributions near zero and compute the limiting distribution. We show applications to regression analysis and obtain hypothesis tests and their asymptotic power.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/IJSA/2012/268568.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJSA/2012/268568.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnijsa:268568
DOI: 10.1155/2012/268568
Access Statistics for this article
More articles in International Journal of Stochastic Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().