EconPapers    
Economics at your fingertips  
 

On the variance of the number of real roots of a random trigonometric polynomial

K. Farahmand

International Journal of Stochastic Analysis, 1990, vol. 3, 1-9

Abstract:

This paper provides an upper estimate for the variance of the number of real zeros of the random trigonometric polynomial g 1 cos θ + g 2 cos 2 θ + … + g n cos n θ . The coefficients g i ( i = 1 , 2 , … , n ) are assumed independent and normally distributed with mean zero and variance one.

Date: 1990
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/IJSA/3/639703.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJSA/3/639703.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnijsa:639703

DOI: 10.1155/S1048953390000235

Access Statistics for this article

More articles in International Journal of Stochastic Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnijsa:639703