A Cutting Plane and Level Stabilization Bundle Method with Inexact Data for Minimizing Nonsmooth Nonconvex Functions
Jie Shen,
Dan Li and
Li-Ping Pang
Abstract and Applied Analysis, 2014, vol. 2014, 1-6
Abstract:
Under the condition that the values of the objective function and its subgradient are computed approximately, we introduce a cutting plane and level bundle method for minimizing nonsmooth nonconvex functions by combining cutting plane method with the ideas of proximity control and level constraint. The proposed algorithm is based on the construction of both a lower and an upper polyhedral approximation model to the objective function and calculates new iteration points by solving a subproblem in which the model is employed not only in the objective function but also in the constraints. Compared with other proximal bundle methods, the new variant updates the lower bound of the optimal value, providing an additional useful stopping test based on the optimality gap. Another merit is that our algorithm makes a distinction between affine pieces that exhibit a convex or a concave behavior relative to the current iterate. Convergence to some kind of stationarity point is proved under some looser conditions.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2014/192893.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2014/192893.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:192893
DOI: 10.1155/2014/192893
Access Statistics for this article
More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().