New Existence Results for Fractional Integrodifferential Equations with Nonlocal Integral Boundary Conditions
Ahmed Alsaedi,
Sotiris K. Ntouyas and
Bashir Ahmad
Abstract and Applied Analysis, 2015, vol. 2015, 1-10
Abstract:
We consider a boundary value problem of fractional integrodifferential equations with new nonlocal integral boundary conditions of the form: , and . According to these conditions, the value of the unknown function at the left end point is proportional to its value at a nonlocal point while the value at an arbitrary (local) point is proportional to the contribution due to a substrip of arbitrary length . These conditions appear in the mathematical modelling of physical problems when different parts (nonlocal points and substrips of arbitrary length) of the domain are involved in the input data for the process under consideration. We discuss the existence of solutions for the given problem by means of the Sadovski fixed point theorem for condensing maps and a fixed point theorem due to O’Regan. Some illustrative examples are also presented.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2015/205452.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2015/205452.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:205452
DOI: 10.1155/2015/205452
Access Statistics for this article
More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().