Analytical Solutions of Boundary Values Problem of 2D and 3D Poisson and Biharmonic Equations by Homotopy Decomposition Method
Abdon Atangana and
Adem Kılıçman
Abstract and Applied Analysis, 2013, vol. 2013, 1-9
Abstract:
The homotopy decomposition method, a relatively new analytical method, is used to solve the 2D and 3D Poisson equations and biharmonic equations. The method is chosen because it does not require the linearization or assumptions of weak nonlinearity, the solutions are generated in the form of general solution, and it is more realistic compared to the method of simplifying the physical problems. The method does not require any corrected function or any Lagrange multiplier and it avoids repeated terms in the series solutions compared to the existing decomposition method including the variational iteration method, the Adomian decomposition method, and Homotopy perturbation method. The approximated solutions obtained converge to the exact solution as tends to infinity.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2013/380484.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2013/380484.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:380484
DOI: 10.1155/2013/380484
Access Statistics for this article
More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().