EconPapers    
Economics at your fingertips  
 

A New Approach for a Class of the Blasius Problem via a Transformation and Adomian’s Method

Abdelhalim Ebaid and Nwaf Al-Armani

Abstract and Applied Analysis, 2013, vol. 2013, 1-8

Abstract:

The main feature of the boundary layer flow problems is the inclusion of the boundary conditions at infinity. Such boundary conditions cause difficulties for any of the series methods when applied to solve such problems. To the best of the authors’ knowledge, two procedures were used extensively in the past two decades to deal with the boundary conditions at infinity, either the Padé approximation or the direct numerical codes. However, an intensive work is needed to perform the calculations using the Padé technique. Regarding this point, a new idea is proposed in this paper. The idea is based on transforming the unbounded domain into a bounded one by the help of a transformation. Accordingly, the original differential equation is transformed into a singular differential equation with classical boundary conditions. The current approach is applied to solve a class of the Blasius problem and a special class of the Falkner-Skan problem via an improved version of Adomian’s method (Ebaid, 2011). In addition, the numerical results obtained by using the proposed technique are compared with the other published solutions, where good agreement has been achieved. The main characteristic of the present approach is the avoidance of the Padé approximation to deal with the infinity boundary conditions.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2013/753049.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2013/753049.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:753049

DOI: 10.1155/2013/753049

Access Statistics for this article

More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlaaa:753049