EconPapers    
Economics at your fingertips  
 

Automatic Gauge Control in Rolling Process Based on Multiple Smith Predictor Models

Jiangyun Li, Kang Wang and Yang Li

Abstract and Applied Analysis, 2014, vol. 2014, 1-10

Abstract:

Automatic rolling process is a high-speed system which always requires high-speed control and communication capabilities. Meanwhile, it is also a typical complex electromechanical system; distributed control has become the mainstream of computer control system for rolling mill. Generally, the control system adopts the 2-level control structure—basic automation (Level 1) and process control (Level 2)—to achieve the automatic gauge control. In Level 1, there is always a certain distance between the roll gap of each stand and the thickness testing point, leading to the time delay of gauge control. Smith predictor is a method to cope with time-delay system, but the practical feedback control based on traditional Smith predictor cannot get the ideal control result, because the time delay is hard to be measured precisely and in some situations it may vary in a certain range. In this paper, based on adaptive Smith predictor, we employ multiple models to cover the uncertainties of time delay. The optimal model will be selected by the proposed switch mechanism. Simulations show that the proposed multiple Smith model method exhibits excellent performance in improving the control result even for system with jumping time delay.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/AAA/2014/872418.pdf (application/pdf)
http://downloads.hindawi.com/journals/AAA/2014/872418.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlaaa:872418

DOI: 10.1155/2014/872418

Access Statistics for this article

More articles in Abstract and Applied Analysis from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlaaa:872418