EconPapers    
Economics at your fingertips  
 

The Generalized Order- 𠑘 Lucas Sequences in Finite Groups

Ömür Deveci and Erdal Karaduman

Journal of Applied Mathematics, 2012, vol. 2012, 1-15

Abstract:

We study the generalized order- 𠑘 Lucas sequences modulo ð ‘š . Also, we define the ð ‘– th generalized order- 𠑘 Lucas orbit ð ‘™ ð ‘– , { ð ›¼ 1 , ð ›¼ 2 , … , ð ›¼ 𠑘 − 1 } ð ´ ( ð º ) with respect to the generating set ð ´ and the constants ð ›¼ 1 , ð ›¼ 2 , and ð ›¼ 𠑘 − 1 for a finite group ð º = ⟨ ð ´ âŸ© . Then, we obtain the lengths of the periods of the ð ‘– th generalized order- 𠑘 Lucas orbits of the binary polyhedral groups ⟨ ð ‘› , 2 , 2 ⟩ , ⟨ 2 , ð ‘› , 2 ⟩ , ⟨ 2 , 2 , ð ‘› ⟩ and the polyhedral groups ( ð ‘› , 2 , 2 ) , ( 2 , ð ‘› , 2 ) , ( 2 , 2 , ð ‘› ) for 1 ≤ ð ‘– ≤ 𠑘 .

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/JAM/2012/464580.pdf (application/pdf)
http://downloads.hindawi.com/journals/JAM/2012/464580.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnljam:464580

DOI: 10.1155/2012/464580

Access Statistics for this article

More articles in Journal of Applied Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnljam:464580