The Generalized Order- 𠑘 Lucas Sequences in Finite Groups
Ömür Deveci and
Erdal Karaduman
Journal of Applied Mathematics, 2012, vol. 2012, 1-15
Abstract:
We study the generalized order- 𠑘 Lucas sequences modulo ð ‘š . Also, we define the ð ‘– th generalized order- 𠑘 Lucas orbit ð ‘™ ð ‘– , { ð ›¼ 1 , ð ›¼ 2 , … , ð ›¼ 𠑘 − 1 } ð ´ ( ð º ) with respect to the generating set ð ´ and the constants ð ›¼ 1 , ð ›¼ 2 , and ð ›¼ 𠑘 − 1 for a finite group ð º = ⟨ ð ´ âŸ© . Then, we obtain the lengths of the periods of the ð ‘– th generalized order- 𠑘 Lucas orbits of the binary polyhedral groups ⟨ ð ‘› , 2 , 2 ⟩ , ⟨ 2 , ð ‘› , 2 ⟩ , ⟨ 2 , 2 , ð ‘› ⟩ and the polyhedral groups ( ð ‘› , 2 , 2 ) , ( 2 , ð ‘› , 2 ) , ( 2 , 2 , ð ‘› ) for 1 ≤ ð ‘– ≤ 𠑘 .
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/JAM/2012/464580.pdf (application/pdf)
http://downloads.hindawi.com/journals/JAM/2012/464580.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnljam:464580
DOI: 10.1155/2012/464580
Access Statistics for this article
More articles in Journal of Applied Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().