Convergence Region of Newton Iterative Power Flow Method: Numerical Studies
Jiao-Jiao Deng and
Hsiao-Dong Chiang
Journal of Applied Mathematics, 2013, vol. 2013, 1-12
Abstract:
Power flow study plays a fundamental role in the process of power system operation and planning. Of the several methods in commercial power flow package, the Newton-Raphson (NR) method is the most popular one. In this paper, we numerically study the convergence region of each power flow solution under the NR method. This study of convergence region provides insights of the complexity of the NR method in finding power flow solutions. Our numerical studies confirm that the convergence region of NR method has a fractal boundary and find that this fractal boundary of convergence regions persists under different loading conditions. In addition, the convergence regions of NR method for power flow equations with different nonlinear load models are also fractal. This fractal property highlights the importance of choosing initial guesses since a small variation of an initial guess near the convergence boundary leads to two different power flow solutions. One vital variation of Newton method popular in power industry is the fast decoupled power flow method whose convergence region is also numerically studied on an IEEE 14-bus test system which is of 22-dimensional in state space.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/JAM/2013/509496.pdf (application/pdf)
http://downloads.hindawi.com/journals/JAM/2013/509496.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnljam:509496
DOI: 10.1155/2013/509496
Access Statistics for this article
More articles in Journal of Applied Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().