EconPapers    
Economics at your fingertips  
 

Modeling and Simulation of a Chemical Vapor Deposition

J. Geiser and M. Arab

Journal of Applied Mathematics, 2011, vol. 2011, 1-25

Abstract:

We are motivated to model PE-CVD (plasma enhanced chemical vapor deposition) processes for metallic bipolar plates, and their optimization for depositing a heterogeneous layer on the metallic plate. Moreover a constraint to the deposition process is a very low pressure (nearly a vacuum) and a low temperature (about 400 K). The contribution of this paper is to derive a multiphysics system of multiple physics problems that includes some assumptions to simplify the complicate process and allows of deriving a computable mathematical model without neglecting the real-life processes. To model the gaseous transport in the apparatus we employ mobile gas phase streams, immobile and mobile phases in a chamber that is filled with porous medium (plasma layers). Numerical methods are discussed to solve such multi-scale and multi phase models and to obtain qualitative results for the delicate multiphysical processes in the chamber. We discuss a splitting analysis to couple such multiphysical problems. The verification of such a complicated model is done with real-life experiments for single species. Such numerical simulations help to economize on expensive physical experiments and obtain control mechanisms for the delicate deposition process.

Date: 2011
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/JAM/2011/641920.pdf (application/pdf)
http://downloads.hindawi.com/journals/JAM/2011/641920.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnljam:641920

DOI: 10.1155/2011/641920

Access Statistics for this article

More articles in Journal of Applied Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnljam:641920