Fitting the Distribution of Linear Combinations of t− Variables with more than 2 Degrees of Freedom
Onel L. Alcaraz López,
Evelio M. Garcia Fernández,
Matti Latva-aho and
Alessandro Barbiero
Journal of Probability and Statistics, 2023, vol. 2023, 1-13
Abstract:
The linear combination of Student’s t random variables (RVs) appears in many statistical applications. Unfortunately, the Student’s t distribution is not closed under convolution, thus, deriving an exact and general distribution for the linear combination of K Student’s t RVs is infeasible, which motivates a fitting/approximation approach. Here, we focus on the scenario where the only constraint is that the number of degrees of freedom of each t− RV is greater than two. Notice that since the odd moments/cumulants of the Student’s t distribution are zero and the even moments/cumulants do not exist when their order is greater than the number of degrees of freedom, it becomes impossible to use conventional approaches based on moments/cumulants of order one or higher than two. To circumvent this issue, herein we propose fitting such a distribution to that of a scaled Student’s t RV by exploiting the second moment together with either the first absolute moment or the characteristic function (CF). For the fitting based on the absolute moment, we depart from the case of the linear combination of K=2 Student’s t RVs and then generalize to K≥2 through a simple iterative procedure. Meanwhile, the CF-based fitting is direct, but its accuracy (measured in terms of the Bhattacharyya distance metric) depends on the CF parameter configuration, for which we propose a simple but accurate approach. We numerically show that the CF-based fitting usually outperforms the absolute moment-based fitting and that both the scale and number of degrees of freedom of the fitting distribution increase almost linearly with K.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/jps/2023/9967290.pdf (application/pdf)
http://downloads.hindawi.com/journals/jps/2023/9967290.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnljps:9967290
DOI: 10.1155/2023/9967290
Access Statistics for this article
More articles in Journal of Probability and Statistics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().