EconPapers    
Economics at your fingertips  
 

The Algorithm of Link Prediction on Social Network

Liyan Dong, Yongli Li, Han Yin, Huang Le and Mao Rui

Mathematical Problems in Engineering, 2013, vol. 2013, 1-7

Abstract:

At present, most link prediction algorithms are based on the similarity between two entities. Social network topology information is one of the main sources to design the similarity function between entities. But the existing link prediction algorithms do not apply the network topology information sufficiently. For lack of traditional link prediction algorithms, we propose two improved algorithms: CNGF algorithm based on local information and KatzGF algorithm based on global information network. For the defect of the stationary of social network, we also provide the link prediction algorithm based on nodes multiple attributes information. Finally, we verified these algorithms on DBLP data set, and the experimental results show that the performance of the improved algorithm is superior to that of the traditional link prediction algorithm.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2013/125123.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2013/125123.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:125123

DOI: 10.1155/2013/125123

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:125123