EconPapers    
Economics at your fingertips  
 

LightGBM Low-Temperature Prediction Model Based on LassoCV Feature Selection

Shangqi Duan, Shuangde Huang, Wei Bu, Xingke Ge, Haidong Chen, Jing Liu and Jiqiang Luo

Mathematical Problems in Engineering, 2021, vol. 2021, 1-8

Abstract:

Icing disasters on power grid transmission lines can easily lead to major accidents, such as wire breakage and tower overturning, that endanger the safe operation of the power grid. Short-term prediction of transmission line icing relies to a large extent on accurate prediction of daily minimum temperature. This study therefore proposes a LightGBM low-temperature prediction model based on LassoCV feature selection. A data set comprising four meteorological variables was established, and time series autocorrelation coefficients were first used to determine the hysteresis characteristics in relation to the daily minimum temperature. Subsequently, the LassoCV feature selection method was used to select the meteorological elements that are highly related to minimum temperature, with their lag characteristics, as input variables, to eliminate noise in the original meteorological data set and reduce the complexity of the model. On this basis, the LightGBM low-temperature prediction model is established. The model was optimized through grid search and crossvalidation and validated using daily minimum surface temperature data from Yongshan County (station number 56489), Zhaotong City, Yunnan Province. The root mean square error, MAE, and MAPE of the model minimum temperature prediction after feature selection are shown to be 1.305, 0.999, and 0.112, respectively. These results indicate that the LightGBM prediction model is effective at predicting low temperatures and can be used to support short-term icing prediction.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/1776805.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/1776805.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:1776805

DOI: 10.1155/2021/1776805

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:1776805