Analysis of a Multiparticipant Game under a Subsidy and Punishment Mechanism: An Evolutionary Theory Perspective
Jiangchao Li and
Shilei Yang
Mathematical Problems in Engineering, 2021, vol. 2021, 1-20
Abstract:
In a market with intense competition, cost pressures tempt enterprises to seek profits in ways that infringe on the interests of consumers. This is especially true when market sentiment is weak. In such situations, governments play a vital role in protecting consumers’ interests and helping struggling enterprises. We construct a tripartite game model that includes the government, enterprises, and consumers under a subsidy and punishment mechanism. We use this model to investigate the strategic choices made by the participants in an evolutionary game theory (EGT) framework. We present four stable equilibrium points as pure strategy solutions with the aid of a replicator dynamic system. Three main findings are presented in this paper. First, not all equilibrium points can be evolutionary stable strategies (ESSs) when considering the potential motivations of the participants to change strategies. Second, there is an equilibrium point that satisfies the stability condition but changes periodically in its strategy space; strategy changes between participants are not synchronized. Third, the government prefers to subsidize enterprises when enterprise speculation is serious or when enterprise investment in improving production technology is high.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/1984676.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/1984676.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:1984676
DOI: 10.1155/2021/1984676
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().