An Optimization Design Method of Combination of Steep Slope and Sharp Curve Sections for Mountain Highways
Lei Yue and
Hui Wang
Mathematical Problems in Engineering, 2019, vol. 2019, 1-13
Abstract:
As it was found steep slope and sharp curve sections account for 14% of the accident-prone sections according to the accidents data in Chongqing. Regular design indices with certain thresholds are found not enough for this kind of mountain highways. The goal of this paper is to find an optimization design method for combination of steep slope and sharp curve sections based on the analysis of vehicle driving stability. The overall safety model of steep slope and sharp curve combined section is established, and the relevant coordination relationship between design indices of the front and rear alignment unit is established by using the operating speed estimation model. Taking the maximum slope length corresponding to the specified design speed as the design condition of the front segment, the threshold values and variation rules of the design indices of the rear segment under different design speeds are calculated ensuring driving safety. The safety model is simulated by CarSim software, the trajectory offset and lateral acceleration are used to indirectly reflect the degree of lateral instability, and the results are compared to verify the effectiveness of the simplified safety model established in this paper.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2019/2416342.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2019/2416342.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:2416342
DOI: 10.1155/2019/2416342
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().