EconPapers    
Economics at your fingertips  
 

Stock Market Prediction Based on Financial News Text Mining and Investor Sentiment Recognition

Jianxin Bi and Zaoli Yang

Mathematical Problems in Engineering, 2022, vol. 2022, 1-9

Abstract: The stock market is usually regarded as the bellwether of the economy, which can reflect the economic operation of a country or region. As a significant part of the financial market, the equity market plays a critical role in the financial sector. Whether in academia or investment field, stock market forecasts always excite great interest. Financial news is an important source of information in the financial market, which reflects the mood swings of investors and often goes hand in hand with the market trend. However, due to the unstructured and professional characteristics of financial news, there are challenges in accurately quantifying their emotional tendencies. This research is based on Hidden Markov Model (HMM) to segment financial news text. The recognition and classification of news emotion is carried out by bidirectional long short-term memory (BI-LSTM) algorithm, and long short-term memory(LSTM) model is trained with text emotion index and stock market transaction data to realize the prediction of stock market. The results show that BI-LSTM algorithm performs better than the emotional dictionary algorithm in emotional recognition. And the emotional index of financial news text can enhance the accuracy of stock market prediction to a certain extent. Compared with using stock market technical index and news text vector only, the prediction accuracy can be improved by about 2%.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/mpe/2022/2427389.pdf (application/pdf)
http://downloads.hindawi.com/journals/mpe/2022/2427389.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:2427389

DOI: 10.1155/2022/2427389

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:2427389