EconPapers    
Economics at your fingertips  
 

Evasion-Faced Fast Adaptive Neural Attitude Control for Generic Hypersonic Vehicles with Structural and Parametric Uncertainties

Tian Yan, Yuanli Cai and Caisheng Wei

Mathematical Problems in Engineering, 2021, vol. 2021, 1-12

Abstract:

In general, the evasion task requires the hypersonic vehicles (HSVs) to quickly complete the attitude maneuver in a short time. Moreover, the rapid variation of the flight modes often induces the structural and parametric uncertainties as well as the highly dynamic disturbances of the HSVs. The peculiar and complex characteristics of the evasion process make it difficult to design the evasion-faced flight control systems. In this work, we investigate the fast adaptive control design problem for the generic HSVs under the evasion task. By introducing several especial nonlinear functional vectors and properly designing the adaptive laws, the high dynamic disturbances and uncertainties can be suppressed. To deal with the completed unknown parts of the structural uncertainties and aerodynamic uncertainties caused by evasion maneuver, two radial basis function neural networks (RBFNNs) are introduced as real-time approximators. Furthermore, to improve the response speed of the flight control system, a super-twisting (STW) algorithm-based predictor is used as a feed-forward term of the controller. Consequently, a novel evasion-faced fast adaptive feed-forward control structure has been established for the HSVs. It has been proven that all the signals of the closed-loop system are bounded with satisfactory tracking velocity. Finally, the simulation experiment has been set up to show the effectiveness and advantages of the proposed control method.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/2514073.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/2514073.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:2514073

DOI: 10.1155/2021/2514073

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:2514073