Exploiting Explicit and Implicit Feedback for Personalized Ranking
Gai Li and
Qiang Chen
Mathematical Problems in Engineering, 2016, vol. 2016, 1-11
Abstract:
The problem of the previous researches on personalized ranking is that they focused on either explicit feedback data or implicit feedback data rather than making full use of the information in the dataset. Until now, nobody has studied personalized ranking algorithm by exploiting both explicit and implicit feedback. In order to overcome the defects of prior researches, a new personalized ranking algorithm (MERR_SVD++) based on the newest xCLiMF model and SVD++ algorithm was proposed, which exploited both explicit and implicit feedback simultaneously and optimized the well-known evaluation metric Expected Reciprocal Rank (ERR). Experimental results on practical datasets showed that our proposed algorithm outperformed existing personalized ranking algorithms over different evaluation metrics and that the running time of MERR_SVD++ showed a linear correlation with the number of rating. Because of its high precision and the good expansibility, MERR_SVD++ is suitable for processing big data and has wide application prospect in the field of internet information recommendation.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2016/2535329.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2016/2535329.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:2535329
DOI: 10.1155/2016/2535329
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().