An Efficient Imperialist Competitive Algorithm for Solving the QFD Decision Problem
Xue Ji,
Qi Gao,
Fupeng Yin and
Hengdong Guo
Mathematical Problems in Engineering, 2016, vol. 2016, 1-13
Abstract:
It is an important QFD decision problem to determine the engineering characteristics and their corresponding actual fulfillment levels. With the increasing complexity of actual engineering problems, the corresponding QFD matrixes become much huger, and the time spent on analyzing these matrixes and making decisions will be unacceptable. In this paper, a solution for efficiently solving the QFD decision problem is proposed. The QFD decision problem is reformulated as a mixed integer nonlinear programming (MINLP) model, which aims to maximize overall customer satisfaction with the consideration of the enterprises’ capability, cost, and resource constraints. And then an improved algorithm G-ICA, a combination of Imperialist Competitive Algorithm (ICA) and genetic algorithm (GA), is proposed to tackle this model. The G-ICA is compared with other mature algorithms by solving 7 numerical MINLP problems and 4 adapted QFD decision problems with different scales. The results verify a satisfied global optimization performance and time performance of the G-ICA. Meanwhile, the proposed algorithm’s better capabilities to guarantee decision-making accuracy and efficiency are also proved.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2016/2601561.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2016/2601561.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:2601561
DOI: 10.1155/2016/2601561
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().