Bayesian Analysis of the Survival Function and Failure Rate of Weibull Distribution with Censored Data
Chris Bambey Guure and
Noor Akma Ibrahim
Mathematical Problems in Engineering, 2012, vol. 2012, 1-18
Abstract:
The survival function of the Weibull distribution determines the probability that a unit or an individual will survive beyond a certain specified time while the failure rate is the rate at which a randomly selected individual known to be alive at time will die at time ( ). The classical approach for estimating the survival function and the failure rate is the maximum likelihood method. In this study, we strive to determine the best method, by comparing the classical maximum likelihood against the Bayesian estimators using an informative prior and a proposed data-dependent prior known as generalised noninformative prior. The Bayesian estimation is considered under three loss functions. Due to the complexity in dealing with the integrals using the Bayesian estimator, Lindley’s approximation procedure is employed to reduce the ratio of the integrals. For the purpose of comparison, the mean squared error (MSE) and the absolute bias are obtained. This study is conducted via simulation by utilising different sample sizes. We observed from the study that the generalised prior we assumed performed better than the others under linear exponential loss function with respect to MSE and under general entropy loss function with respect to absolute bias.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2012/329489.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2012/329489.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:329489
DOI: 10.1155/2012/329489
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().