Thermal Flow for Radiative Ternary Hybrid Nanofluid over Nonlinear Stretching Sheet Subject to Darcy–Forchheimer Phenomenon
Kamel Guedri,
Arshad Khan,
Ndolane Sene,
Zehba Raizah,
Anwar Saeed,
Ahmed M. Galal and
Jianguo Wang
Mathematical Problems in Engineering, 2022, vol. 2022, 1-14
Abstract:
This study examines the bidimensional nonlinear convective flow of ternary hybrid nanofluid upon a nonlinear stretching sheet. Three types of nanoparticles, namely Cu,TiO2,Al2O3, are suspended in the base fluid taken as water with a new composition Cu+TiO2+Al2O3/H2O which is termed as ternary hybrid nanofluid. To stabilize the flow and thermal properties of the new composition, the Brownian as well as thermophoresis properties are incorporated into energy and mass equations. The nonlinear thermal radiations and heat absorption/generation terms are included in the energy equation. The effects of the Darcy–Forchheimer phenomenon are also induced in the momentum equation. The set of model equations has shifted to dimension-free form by employing suitable variables. It has concluded in this study that flow characteristics have been declined with augmenting values of volumetric fractions of solid nanoparticles, porosity, and inertia factors and have upsurge with higher values of thermal and nonlinear thermal Grashof numbers. Thermal characteristics have been observed to be augmented with growth in radiation, Brownian motion, thermophoresis, heat generation/absorption, temperature ratio factors, and volumetric fraction of solid nanoparticles. These effects are more significant for ternary hybrid nanoparticles. Concentration profiles have been declined with higher values of Brownian motion factor, Lewis number, and upsurge with growth in thermophoresis factor. It has also been deduced in this investigation that the thermal flow rate is higher for trihybrid nanofluid than hybrid or traditional nanofluids, and a percentage growth in Nusselt number has been shown through statistical chart in support of this work. Current results have been compared with established results and found a fine agreement amongst all results.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/mpe/2022/3429439.pdf (application/pdf)
http://downloads.hindawi.com/journals/mpe/2022/3429439.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:3429439
DOI: 10.1155/2022/3429439
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().