EconPapers    
Economics at your fingertips  
 

Recognition of Mixture Control Chart Pattern Using Multiclass Support Vector Machine and Genetic Algorithm Based on Statistical and Shape Features

Min Zhang and Wenming Cheng

Mathematical Problems in Engineering, 2015, vol. 2015, 1-10

Abstract:

Control charts have been widely utilized for monitoring process variation in numerous applications. Abnormal patterns exhibited by control charts imply certain potentially assignable causes that may deteriorate the process performance. Most of the previous studies are concerned with the recognition of single abnormal control chart patterns (CCPs). This paper introduces an intelligent hybrid model for recognizing the mixture CCPs that includes three main aspects: feature extraction, classifier, and parameters optimization. In the feature extraction, statistical and shape features of observation data are used in the data input to get the effective data for the classifier. A multiclass support vector machine (MSVM) applies for recognizing the mixture CCPs. Finally, genetic algorithm (GA) is utilized to optimize the MSVM classifier by searching the best values of the parameters of MSVM and kernel function. The performance of the hybrid approach is evaluated by simulation experiments, and simulation results demonstrate that the proposed approach is able to effectively recognize mixture CCPs.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2015/382395.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2015/382395.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:382395

DOI: 10.1155/2015/382395

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:382395