EconPapers    
Economics at your fingertips  
 

Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network

Yundi Chu and Juntao Fei

Mathematical Problems in Engineering, 2015, vol. 2015, 1-9

Abstract:

An adaptive global sliding mode control (AGSMC) using RBF neural network (RBFNN) is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS) gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2015/403180.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2015/403180.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:403180

DOI: 10.1155/2015/403180

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:403180