EconPapers    
Economics at your fingertips  
 

Application of Kernel Density Estimation in Lamb Wave-Based Damage Detection

Long Yu and Zhongqing Su

Mathematical Problems in Engineering, 2012, vol. 2012, 1-24

Abstract:

The present work concerns the estimation of the probability density function (p.d.f.) of measured data in the Lamb wave-based damage detection. Although there was a number of research work which focused on the consensus algorithm of combining all the results of individual sensors, the p.d.f. of measured data, which was the fundamental part of the probability-based method, was still given by experience in existing work. Based on the analysis about the noise-induced errors in measured data, it was learned that the type of distribution was related with the level of noise. In the case of weak noise, the p.d.f. of measured data could be considered as the normal distribution. The empirical methods could give satisfied estimating results. However, in the case of strong noise, the p.d.f. was complex and did not belong to any type of common distribution function. Nonparametric methods, therefore, were needed. As the most popular nonparametric method, kernel density estimation was introduced. In order to demonstrate the performance of the kernel density estimation methods, a numerical model was built to generate the signals of Lamb waves. Three levels of white Gaussian noise were intentionally added into the simulated signals. The estimation results showed that the nonparametric methods outperformed the empirical methods in terms of accuracy.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2012/406521.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2012/406521.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:406521

DOI: 10.1155/2012/406521

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:406521