EconPapers    
Economics at your fingertips  
 

Analysis of an M/PH/1 Retrial Queueing-Inventory System with Level Dependent Retrial Rate

Zaiming Liu, Xuxiang Luo and Jinbiao Wu

Mathematical Problems in Engineering, 2020, vol. 2020, 1-10

Abstract:

We analyze a queueing-inventory system which can model airline and railway reservation systems. An arriving customer to an idle server joins for service immediately with exactly one item from inventory at the moment of service completion if there are some on-hand inventory, or else he accesses to a buffer of varying size (the buffer capacity varies and equals to the number of the items in the inventory with maximum size ). When the buffer overflows, the customer joins an orbit of infinite capacity with probability or is lost forever with probability . Arrivals form a Poisson process, and service time has phase type distribution. The time between any two successive retrials of the orbiting customer is exponentially distributed with parameter depending on the number of customers in the orbit. In addition, the items have a common life time with exponentially distributed. Cancellation of orders is possible before their expiry and intercancellation times are assumed to be exponentially distributed. The stability condition and steady-state probability vector have been studied by Neuts–Rao truncation method using the theory of Level Dependent Quasi-Birth-Death (LDQBD) processes. Several stationary performance measures are also computed. Furthermore, we provide numerical illustration of the system performance with variation in values of underlying parameters and analyze an optimization problem.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/4125958.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/4125958.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:4125958

DOI: 10.1155/2020/4125958

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:4125958