Near-Field Measurements of Water-Entry Sound of Low-Speed Metal Balls in a Non-Anechoic Tank
Qi Li,
Yihan Yang,
Dajing Shang,
Rui Tang and
Fangzhou Deng
Mathematical Problems in Engineering, 2021, vol. 2021, 1-11
Abstract:
As one of the target characteristics, water-entry sound characteristics are of great significance to study, and its research has certain reference value for the detection of sea target. The water-entry sound of an underwater target is a transient sound signal, and it is mainly measured in open water such as the sea and lakes. However, due to the short duration of the acoustic signal and the modulation effect of the measuring environment, it is difficult to measure water-entry sound. To deal with this problem, in this work, the water-entry sound of a metal ball was measured in a water tank in a laboratory. The measurements were made in the direct acoustic control area 0.45 m away from the drop point of the ball to eliminate the influence of reflection. Through a time-domain integration, the power of the transient signal of the water-entry sound of the metal ball was obtained. The energy of the initial impact sound and the pulsating-bubble sound was investigated, as was the impact of ball size, entry velocity, and other factors on the characteristics of the water-entry sound. The results show that by combining the virtual-source method with the time-domain integral in the near field, the energy of the incoming sound can be obtained accurately. The results are consistent with closed-space measurements. The water-entry sound includes the initial impact sound and the pulsating-bubble sound. The energy of the pulsating-bubble sound is 3–5 orders of magnitude larger than that of the initial impact sound. The average power level of the water-entry sound is proportional to the ball size and the 2/3 power of the slamming velocity. The relation between the average power level and the 1/3 power of the kinetic energy is an exponential function with base 10. Based on the kinetic energy variety of metal balls entering the water, an acoustic model of this system is established. The results can be used for reference to other transient sound measurements.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/4345419.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/4345419.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:4345419
DOI: 10.1155/2021/4345419
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().