EconPapers    
Economics at your fingertips  
 

Predictive Maintenance Model Based on Multisensor Data Fusion of Hybrid Fuzzy Rough Set Theory Feature Selection and Stacked Ensemble for Fault Classification

Albert Buabeng, Anthony Simons, Nana Kena Frempong, Yao Yevenyo Ziggah and Muazzam Maqsood

Mathematical Problems in Engineering, 2022, vol. 2022, 1-24

Abstract: With the rising demand for integrated and autonomous systems in the field of engineering, efficient frameworks for instant detection of performance anomalies are imperative for improved productivity and cost-effectiveness. This study proposes a systematic predictive maintenance framework based on the hybrid multisensor fusion technique of fuzzy rough set feature selection and stacked ensemble for the efficient classification of fault conditions characterised by uncertainties. First, a feature vector of time-domain features was extracted from 17 multiple sensor signals. Then, a comparative study of six different Fuzzy Rough Set Feature Selection (FRFS) methods was employed to select the various combinations of optimal feature subsets for various faults classification tasks. The determined optimal feature subsets then served as inputs for training the stacked ensemble (ESB(STK)). In the ESB(STK), Support Vector Machine (SVM), Multilayer Perceptron (MLP), k-Nearest Neighbour (k-NN), C4.5 Decision Tree (C4.5 DT), Logistic Regression (LR), and Linear Discriminant Analysis (LDA) served as the base classifiers while the LR was selected to be the metaclassifier. The proposed hybrid framework (FRFS-ESB(STK)) improved the classification accuracy with the selected combinations of optimal feature subset size whiles reducing the computational cost, overfitting, training runtime, and uncertainty in modelling. Overall analyses showed that the FRFS-ESB(STK) proved to be generalisable and versatile in the classification of all conditions of four monitored hydraulic components (i.e., cooler, valve, accumulator, and internal pump leakage) when compared with the six base classifiers (standalone) and three existing ensemble classifiers (Stochastic Gradient Boosting (SGB), Ada Boost (ADB), and Bagging (BAG)). The proposed FRFS-ESB(STK) showed an average improvement of 11.28% and 0.88% test accuracies when classifying accumulator and pump conditions, respectively, whiles 100% classification rates were obtained for both cooler and valve.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/mpe/2022/4372567.pdf (application/pdf)
http://downloads.hindawi.com/journals/mpe/2022/4372567.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:4372567

DOI: 10.1155/2022/4372567

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:4372567