Fault Reconstruction Based on Sliding Mode Observer for Nonlinear Systems
Jing He and
Changfan Zhang
Mathematical Problems in Engineering, 2012, vol. 2012, 1-22
Abstract:
This paper presents a precision fault reconstruction scheme for a class of nonlinear systems involving unknown input disturbances. First, using the coordinate transformation algorithm, the disturbances and faults of the system are fully decoupled. Therefore, it is possible to eliminate the influence of disturbances to the system, namely, better disturbances robustness. On this basis, the design of a sliding mode state observer makes the most genuine reconstruction realizable, instead of estimation of faults. Furthermore, with the equivalent principle of sliding mode variable structure, the precision reconstruction of arbitrary nonlinear faults is achieved. Finally, the applications of fault reconstruction in a third-order nonlinear theoretical model with disturbances and in a single-link robot system, respectively, have demonstrated the validity of the proposed scheme.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2012/451843.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2012/451843.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:451843
DOI: 10.1155/2012/451843
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().