Solubility Optimal System for Supercritical Fluid Extraction Based on a New Nonlinear Temperature-Pressure Decoupling Model Constructed with Unequal-Interval Grey Optimal Models and Peng-Robinson Models
Binglin Li and
Wen You
Mathematical Problems in Engineering, 2018, vol. 2018, 1-11
Abstract:
This paper presents a new solubility optimal system to improve the efficiency of supercritical fluid extraction (SFE). The major contribution is a nonlinear temperature-pressure decoupling model constructed with unequal-interval grey optimal models (UEIGOMs) and Peng-Robinson models (PRMs). The linear parts of temperature and pressure process can be constructed with UEIGOM, respectively. The nonlinear parts of temperature and pressure process can be described by PRMs, respectively. The whole nonlinear model cannot be input-output decoupled resulting from the singularity of decoupling matrix for PRM. This problem on input-output nondecoupling can be transformed to the problem on disturbance decoupling for a class of MIMO nonlinear systems. Therefore, the whole nonlinear coupling model can be disturbance decoupled. Furthermore, solubility optimal method is presented in the paper; it can calculate the optimal pressure according to the given temperature, namely, optimal working points, to maximize solubility for SFE process. The feasibility, effectiveness, and practicality of the proposed nonlinear temperature-pressure decoupling model constructed with UEIGOMs and PRMs are verified by SFE experiments in biphenyl. Experiments using the designed solubility optimal system are carried out to demonstrate the effectiveness in control scheme, simplicity in structure, and flexibility in implementation for the proposed solubility optimal system based on a new nonlinear temperature-pressure coupling model constructed with UEIGOMs and PRMs.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2018/4817565.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2018/4817565.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:4817565
DOI: 10.1155/2018/4817565
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().