A Spatial-Temporal Hybrid Model for Short-Term Traffic Prediction
Fei Lin,
Yudi Xu,
Yang Yang and
Hong Ma
Mathematical Problems in Engineering, 2019, vol. 2019, 1-12
Abstract:
Accurate and timely short-term traffic prediction is important for Intelligent Transportation System (ITS) to solve the traffic problem. This paper presents a hybrid model called SpAE-LSTM. This model considers the temporal and spatial features of traffic flow and it consists of sparse autoencoder and long short-term memory (LSTM) network based on memory units. Sparse autoencoder extracts the spatial features within the spatial-temporal matrix via full connected layers. It cooperates with the LSTM network to capture the spatial-temporal features of traffic flow evolution and make prediction. To validate the performance of the SpAE-LSTM, we implement it on the real-world traffic data from Qingyang District of Chengdu city, China, and compare it with advanced traffic prediction models, such as models only based on LSTM or SAE. The results demonstrate that the proposed model reduces the mean absolute percent error by more than 15%. The robustness of the proposed model is also validated and the mean absolute percent error on more than 86% road segments is below 20%. This research provides strong evidence suggesting that the proposed SpAE-LSTM effectively captures the spatial-temporal features of the traffic flow and achieves promising results.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2019/4858546.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2019/4858546.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:4858546
DOI: 10.1155/2019/4858546
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().