EconPapers    
Economics at your fingertips  
 

Exploiting Product Related Review Features for Fake Review Detection

Chengai Sun, Qiaolin Du and Gang Tian

Mathematical Problems in Engineering, 2016, vol. 2016, 1-7

Abstract:

Product reviews are now widely used by individuals for making their decisions. However, due to the purpose of profit, reviewers game the system by posting fake reviews for promoting or demoting the target products. In the past few years, fake review detection has attracted significant attention from both the industrial organizations and academic communities. However, the issue remains to be a challenging problem due to lacking of labelling materials for supervised learning and evaluation. Current works made many attempts to address this problem from the angles of reviewer and review. However, there has been little discussion about the product related review features which is the main focus of our method. This paper proposes a novel convolutional neural network model to integrate the product related review features through a product word composition model. To reduce overfitting and high variance, a bagging model is introduced to bag the neural network model with two efficient classifiers. Experiments on the real-life Amazon review dataset demonstrate the effectiveness of the proposed approach.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2016/4935792.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2016/4935792.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:4935792

DOI: 10.1155/2016/4935792

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:4935792