The Analytical Solutions of the Stochastic Fractional Kuramoto–Sivashinsky Equation by Using the Riccati Equation Method
Wael W. Mohammed,
A. M. Albalahi,
S. Albadrani,
E. S. Aly,
R Sidaoui,
A. E. Matouk and
A. M. Nagy
Mathematical Problems in Engineering, 2022, vol. 2022, 1-8
Abstract:
In this work, we consider the stochastic fractional-space Kuramoto–Sivashinsky equation using conformable derivative. The Riccati equation method is used to get the analytical solutions to the space-fractional stochastic Kuramoto–Sivashinsky equation. Because this equation has never been examined with space-fractional and multiplicative noise at the same time, we generalize some previous results. Moreover, we display how the multiplicative noise influences on the stability of obtained solutions of the space-fractional stochastic Kuramoto–Sivashinsky equation.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/mpe/2022/5083784.pdf (application/pdf)
http://downloads.hindawi.com/journals/mpe/2022/5083784.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:5083784
DOI: 10.1155/2022/5083784
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().