EconPapers    
Economics at your fingertips  
 

Hierarchical Recognition System for Target Recognition from Sparse Representations

Zongyong Cui, Zongjie Cao, Jianyu Yang and Hongliang Ren

Mathematical Problems in Engineering, 2015, vol. 2015, 1-6

Abstract:

A hierarchical recognition system (HRS) based on constrained Deep Belief Network (DBN) is proposed for SAR Automatic Target Recognition (SAR ATR). As a classical Deep Learning method, DBN has shown great performance on data reconstruction, big data mining, and classification. However, few works have been carried out to solve small data problems (like SAR ATR) by Deep Learning method. In HRS, the deep structure and pattern classifier are combined to solve small data classification problems. After building the DBN with multiple Restricted Boltzmann Machines (RBMs), hierarchical features can be obtained, and then they are fed to classifier directly. To obtain more natural sparse feature representation, the Constrained RBM (CRBM) is proposed with solving a generalized optimization problem. Three RBM variants, -RNM, -RBM, and -RBM, are presented and introduced to HRS in this paper. The experiments on MSTAR public dataset show that the performance of the proposed HRS with CRBM outperforms current pattern recognition methods in SAR ATR, like PCA + SVM, LDA + SVM, and NMF + SVM.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2015/527095.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2015/527095.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:527095

DOI: 10.1155/2015/527095

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:527095