Resident Plug-In Electric Vehicle Charging Modeling and Scheduling Mechanism in the Smart Grid
Peng Han,
Jinkuan Wang,
Yinghua Han and
Yan Li
Mathematical Problems in Engineering, 2014, vol. 2014, 1-8
Abstract:
With the development of smart grid and the increase of global resident Plug-In Electric Vehicle (PEV) market in the near future, the interaction between limited distribution grid capacity and uncontrollable PEV charging loads can lead to violations of local grid restrictions. And the proper model charging scheduling mechanism is the key to assess and satisfy various resident charging requirements and help in optimizing utility utilization. In this paper, the distribution grid profile model with PEV charging power is firstly constructed for the purpose of studying resident PEV charging impact on the distribution grid. To better reflect the actual impact of PEVs, we use real data on driving behaviors, vehicle characteristics, and electricity loads to generate our model. Furthermore, an improved queuing-theory-based scheduling mechanism is proposed, the distribution grid communication structure and the algorithm are illustrated, and computer simulations are demonstrated to verify their performance. The results show that the proposed scheduling mechanism will enhance the distribution grid flexibility to meet various charging requirements while maximizing the grid capacity.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2014/540624.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2014/540624.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:540624
DOI: 10.1155/2014/540624
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().