On Fuzzy Rough Sets and Their Topological Structures
Weidong Tang,
Jinzhao Wu and
Dingwei Zheng
Mathematical Problems in Engineering, 2014, vol. 2014, 1-17
Abstract:
The core concepts of rough set theory are information systems and approximation operators of approximation spaces. Approximation operators draw close links between rough set theory and topology. This paper is devoted to the discussion of fuzzy rough sets and their topological structures. Fuzzy rough approximations are further investigated. Fuzzy relations are researched by means of topology or lower and upper sets. Topological structures of fuzzy approximation spaces are given by means of pseudoconstant fuzzy relations. Fuzzy topology satisfying (CC) axiom is investigated. The fact that there exists a one-to-one correspondence between the set of all preorder fuzzy relations and the set of all fuzzy topologies satisfying (CC) axiom is proved, the concept of fuzzy approximating spaces is introduced, and decision conditions that a fuzzy topological space is a fuzzy approximating space are obtained, which illustrates that we can research fuzzy relations or fuzzy approximation spaces by means of topology and vice versa. Moreover, fuzzy pseudoclosure operators are examined.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2014/546372.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2014/546372.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:546372
DOI: 10.1155/2014/546372
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().