Progressive Iterative Approximation for Extended B-Spline Interpolation Surfaces
Yeqing Yi,
Zixuan Tang and
Chengzhi Liu
Mathematical Problems in Engineering, 2021, vol. 2021, 1-10
Abstract:
In order to improve the computational efficiency of data interpolation, we study the progressive iterative approximation (PIA) for tensor product extended cubic uniform B-spline surfaces. By solving the optimal shape parameters, we can minimize the spectral radius of PIA’s iteration matrix, and hence the convergence rate of PIA is accelerated. Stated numerical examples show that the optimal shape parameters make the PIA have the fastest convergence rate.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/5556771.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/5556771.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:5556771
DOI: 10.1155/2021/5556771
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().