EconPapers    
Economics at your fingertips  
 

Complex Dynamics and Hard Limiter Control of a Fractional-Order Buck-Boost System

Bo Yan, Shaojie Wang and Shaobo He

Mathematical Problems in Engineering, 2021, vol. 2021, 1-16

Abstract:

Chaos and control analysis for the fractional-order nonlinear circuits is a recent hot topic. In this study, a fractional-order model is deduced from a Buck-Boost converter, and its discrete solution is obtained based on the Adomian decomposition method (ADM). Chaotic dynamic characteristics of the fractional-order system are investigated by the bifurcation diagram, 0-1 test, spectral entropy (SE) algorithm, and NIST test. Meanwhile, the control of the fractional-order Buck-Boost model is discussed through two different ways, namely, the intensity feedback and the hard limiter control. Specifically, the hard limiter control can be realized using a current limiter in the circuit, where the current limiter device is applied to control the branch current. The results show that the proposed fractional-order system has complex dynamic behaviors and potential application values in the engineering field.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/5572840.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/5572840.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:5572840

DOI: 10.1155/2021/5572840

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:5572840