Safety Monitoring of a Super-High Dam Using Optimal Kernel Partial Least Squares
Hao Huang,
Bo Chen and
Chungao Liu
Mathematical Problems in Engineering, 2015, vol. 2015, 1-13
Abstract:
Considering the characteristics of complex nonlinear and multiple response variables of a super-high dam, kernel partial least squares (KPLS) method, as a strongly nonlinear multivariate analysis method, is introduced into the field of dam safety monitoring for the first time. A universal unified optimization algorithm is designed to select the key parameters of the KPLS method and obtain the optimal kernel partial least squares (OKPLS). Then, OKPLS is used to establish a strongly nonlinear multivariate safety monitoring model to identify the abnormal behavior of a super-high dam via model multivariate fusion diagnosis. An analysis of deformation monitoring data of a super-high arch dam was undertaken as a case study. Compared to the multiple linear regression (MLR), partial least squares (PLS), and KPLS models, the OKPLS model displayed the best fitting accuracy and forecast precision, and the model multivariate fusion diagnosis reduced the number of false alarms compared to the traditional univariate diagnosis. Thus, OKPLS is a promising method in the application of super-high dam safety monitoring.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2015/571594.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2015/571594.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:571594
DOI: 10.1155/2015/571594
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().