EconPapers    
Economics at your fingertips  
 

An Approach to Semantic and Structural Features Learning for Software Defect Prediction

Shi Meilong, Peng He, Haitao Xiao, Huixin Li and Cheng Zeng

Mathematical Problems in Engineering, 2020, vol. 2020, 1-13

Abstract:

Research on software defect prediction has achieved great success at modeling predictors. To build more accurate predictors, a number of hand-crafted features are proposed, such as static code features, process features, and social network features. Few models, however, consider the semantic and structural features of programs. Understanding the context information of source code files could explain a lot about the cause of defects in software. In this paper, we leverage representation learning for semantic and structural features generation. Specifically, we first extract token vectors of code files based on the Abstract Syntax Trees (ASTs) and then feed the token vectors into Convolutional Neural Network (CNN) to automatically learn semantic features. Meanwhile, we also construct a complex network model based on the dependencies between code files, namely, software network (SN). After that, to learn the structural features, we apply the network embedding method to the resulting SN. Finally, we build a novel software defect prediction model based on the learned semantic and structural features (SDP-S2S). We evaluated our method on 6 projects collected from public PROMISE repositories. The results suggest that the contribution of structural features extracted from software network is prominent, and when combined with semantic features, the results seem to be better. In addition, compared with the traditional hand-crafted features, the F -measure values of SDP-S2S are generally increased, with a maximum growth rate of 99.5%. We also explore the parameter sensitivity in the learning process of semantic and structural features and provide guidance for the optimization of predictors.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/6038619.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/6038619.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6038619

DOI: 10.1155/2020/6038619

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:6038619