EconPapers    
Economics at your fingertips  
 

Automatic Modulation Classification Exploiting Hybrid Machine Learning Network

Feng Wang, Shanshan Huang, Hao Wang and Chenlu Yang

Mathematical Problems in Engineering, 2018, vol. 2018, 1-14

Abstract:

It is a research hot spot in cognitive electronic warfare systems to classify the electromagnetic signals of a radar or communication system according to their modulation characteristics. We construct a multilayer hybrid machine learning network for the classification of seven types of signals in different modulation. We extract the signal modulation features exploiting a set of algorithms such as time-frequency analysis, discrete Fourier transform, and instantaneous autocorrelation and accomplish automatic modulation classification using naive Bayesian and support vector machine in a hybrid manner. The parameters in the network for classification are determined automatically in the training process. The numerical simulation results indicate that the proposed network accomplishes the classification accurately.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2018/6152010.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2018/6152010.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6152010

DOI: 10.1155/2018/6152010

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:6152010