Dynamic Programming-Based Energy Management System for Range-Extended Electric Bus
Xiaogang Wu,
Jingfu Chen and
Chen Hu
Mathematical Problems in Engineering, 2015, vol. 2015, 1-11
Abstract:
The heavy computational burden associated with the application of the traditional DP strategy to the energy management of range-extended electric buses poses a serious problem. On the basis of one Chinese typical urban bus driving cycle, an optimal control strategy is designed according to the SOC consumption trend, which is optimized by the DP algorithm. The dissipative energy and the energy-traction efficiency are our evaluation indices. The energy efficiencies of the powertrain system and components are analyzed by the energy flow diagram method. The results show that when the range-extended electric bus runs 35 Chinese typical urban bus driving cycles, the energy consumption and the energy efficiency of the powertrain system, which are optimized by the traditional DP strategy, can reach 2844.28 MJ and 31.29%, respectively. Compared with the traditional bus, the energy consumption can be reduced by 31.08%. The energy consumption and the energy efficiency of the powertrain system, which are based on one driving cycle optimal strategy, can reach 2857.69 MJ and 31.14%, respectively. The energy consumption is 0.47% higher than that with the traditional DP strategy, but the computation time is reduced by 96.85%.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2015/624649.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2015/624649.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:624649
DOI: 10.1155/2015/624649
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().