Improvement of the Efficiency of the Axial-Flow Pump at Part Loads due to Installing Outlet Guide Vanes Mechanism
Fan Yang,
Hao-ru Zhao and
Chao Liu
Mathematical Problems in Engineering, 2016, vol. 2016, 1-10
Abstract:
In order to investigate the influence of adjustable outlet guide vane on the hydraulic performance of axial-flow pump at part loads, the axial-flow pump with 7 different outlet guide vane adjustable angles was simulated based on the RNG turbulent model and Reynolds time-averaged equations. The Vector graphs of airfoil flow were analyzed in the different operating conditions for different adjustable angles of guide vane. BP-ANN prediction model was established about the effect of adjustable outlet guide vane on the hydraulic performance of axial-flow pump based on the numerical results. The effectiveness of prediction model was verified by theoretical analysis and numerical simulation. The results show that, with the adjustable angle of guide vane increasing along clockwise, the high efficiency area moves to the large flow rate direction; otherwise, that moves to the small flow rate direction. The internal flow field of guide vane is improved by adjusting angle, and the flow separation of tail and guide vane inlet ledge are decreased or eliminated, so that the hydraulic efficiency of pumping system will be improved. The prediction accuracy of BP-ANN model is 1%, which can meet the requirement of practical engineering.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2016/6375314.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2016/6375314.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6375314
DOI: 10.1155/2016/6375314
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().