EconPapers    
Economics at your fingertips  
 

Global Mittag–Leffler Stabilization of Fractional-Order BAM Neural Networks with Linear State Feedback Controllers

Hongyun Yan, Yuanhua Qiao, Lijuan Duan and Ling Zhang

Mathematical Problems in Engineering, 2020, vol. 2020, 1-10

Abstract:

In this paper, the global Mittag–Leffler stabilization of fractional-order BAM neural networks is investigated. First, a new lemma is proposed by using basic inequality to broaden the selection of Lyapunov function. Second, linear state feedback control strategies are designed to induce the stability of fractional-order BAM neural networks. Third, based on constructed Lyapunov function, generalized Gronwall-like inequality, and control strategies, several sufficient conditions for the global Mittag–Leffler stabilization of fractional-order BAM neural networks are established. Finally, a numerical simulation is given to demonstrate the effectiveness of our theoretical results.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/6398208.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/6398208.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6398208

DOI: 10.1155/2020/6398208

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:6398208